x
No Plagiarism!zEEQcCiAeCXNPVAM5lj2posted on PENANA 恐懼感8964 copyright protection422PENANAZQDwcjWwyT 維尼
426Please respect copyright.PENANAJmvPazGKAe
8964 copyright protection422PENANA7ZByCvRYQ3 維尼
∫sin(√x+a)e√x√xdx8964 copyright protection422PENANAaUdKq7LHWS 維尼
Substitute u=√x ⟶ dudx=12√x (steps) ⟶ dx=2√xdu:8964 copyright protection422PENANAWqw2yIkcKQ 維尼
=2∫eusin(u+a)du… or choose an alternative:426Please respect copyright.PENANAGk0te0oXW7
Substitute e√x8964 copyright protection422PENANA4vEEsgl3IR 維尼
Now solving:8964 copyright protection422PENANAJV3GAZ0d2h 維尼
∫eusin(u+a)du8964 copyright protection422PENANAeCHKg2ZXHw 維尼
We will integrate by parts twice in a row: ∫fg′=fg−∫f′g.8964 copyright protection422PENANAy7bTDz6bW8 維尼
First time:8964 copyright protection422PENANAr7bzlYkVPP 維尼
f=sin(u+a),g′=eu8964 copyright protection422PENANAA6Aiiv0OHH 維尼
↓ steps↓ steps8964 copyright protection422PENANAvHnYr2GBXU 維尼
f′=cos(u+a),g=eu:8964 copyright protection422PENANAySjdvXnlR5 維尼
=eusin(u+a)−∫eucos(u+a)du8964 copyright protection422PENANApbh1sSL0zE 維尼
Second time:8964 copyright protection422PENANAH58MpHWOhT 維尼
f=cos(u+a),g′=eu8964 copyright protection422PENANATIi84Q7yMT 維尼
↓ steps↓ steps8964 copyright protection422PENANAAsFIk86b3n 維尼
f′=−sin(u+a),g=eu:8964 copyright protection422PENANAmGlToTFnWc 維尼
=eusin(u+a)−(eucos(u+a)−∫−eusin(u+a)du)8964 copyright protection422PENANA7IhTKCpTXZ 維尼
Apply linearity:8964 copyright protection422PENANAMGFYOgKdDW 維尼
=eusin(u+a)−(eucos(u+a)+∫eusin(u+a)du)8964 copyright protection422PENANATp8jGzCZlQ 維尼
The integral ∫eusin(u+a)du appears again on the right side of the equation, we can solve for it:8964 copyright protection422PENANAAykjoQtHgJ 維尼
=eusin(u+a)−eucos(u+a)28964 copyright protection422PENANAFmT4LhM5Nw 維尼
Plug in solved integrals:8964 copyright protection422PENANArSuva0UF7L 維尼
2∫eusin(u+a)du=eusin(u+a)−eucos(u+a)8964 copyright protection422PENANAgOCOCWnlXF 維尼
Undo substitution u=√x:8964 copyright protection422PENANAHZKi8YOG15 維尼
=sin(√x+a)e√x−cos(√x+a)e√x8964 copyright protection422PENANAJqkWTnjhU0 維尼
The problem is solved:8964 copyright protection422PENANA29elphMP6Z 維尼
∫sin(√x+a)e√x√xdx=sin(√x+a)e√x−cos(√x+a)e√x+C8964 copyright protection422PENANA5KUeqOCEqs 維尼
Rewrite/simplify:8964 copyright protection422PENANASFSgMoUZAC 維尼
=(sin(√x+a)−cos(√x+a))e√x+C8964 copyright protection422PENANAR9RG5NQ2Cb 維尼
3.144.118.174
ns3.144.118.174da2